Exam. Code : 206602
 Subject Code : 4088

M.Sc. (Bioinformatics) 2nd Semester BASIC MATHEMATICS
 Paper-BI-523

Time Allowed-3 Hours]
[Maximum Marks-75
Note :- Attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any section.

SECTION-A

1. (a) If $A=\{2,3,5\}, B=\{1,2,3\}, C=\{3,5\}$, find $A \times(B \cup C)$ and $(A \cup B) \cap C$. 5
(b) Let $\mathrm{A}=\{2,4,6,8\}$, show that the relation $R=\{(2,2),(4,4),(4,6),(6,6),(6,8)\}$ is neither reflexive, nor symmetric, nor transitive. 6
(c) Define and give an example of a periodic function.
2. (a) Find the square root of $3-4 \mathrm{i}$. 5
(b) Write $\frac{(2-3 \mathrm{i})(5+3 \mathrm{i})}{(3+2 \mathrm{i})(-4-\mathrm{i})}$ in the form $\mathrm{x}+\mathrm{iy}$, where x, y are real numbers.
(c) Find conjugate of $\frac{(1+\mathrm{i})^{2}}{3-\mathrm{i}}$. 5

SECTION-B

3. (a) If $A=\left[\begin{array}{cc}1 & 2 \\ -3 & 0\end{array}\right]$, find $A^{2}+3 A+5 I$.
(b) Evaluate $\left|\begin{array}{lll}1 & \mathrm{a} & \mathrm{b}+\mathrm{c} \\ 1 & \mathrm{~b} & \mathrm{c}+\mathrm{a} \\ 1 & \mathrm{c} & \mathrm{c}+\mathrm{b}\end{array}\right|$.
(c) Evaluate A^{-1} for $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$.
4. (a) Show that $(\vec{a} \times \vec{b})^{2}=a^{2} b^{2}-(\vec{a} \cdot \vec{b})^{2}$.

5
(b) Find the value of p for which the vectors $\vec{a}=3 \vec{i}+2 \vec{j}-9 \vec{k}$ and $\vec{b}=\vec{i}+p \vec{j}+3 \vec{k}$ are perpendicular.

5
(c) If $\vec{a}=\vec{i}+2 \vec{j}+3 \vec{k}, \quad \vec{b}=-\vec{i}+2 \vec{j}+\vec{k}, \quad \vec{c}=3 \vec{i}+\vec{j}$, find $(\vec{a} \times \vec{b}) \cdot \vec{c}$.

SECTION-C

5. (a) If $s=t^{3}-2 t^{2}+3 t-4$, give the position, velocity and acceleration of the particle at the end of 2 seconds. Here s is the distance and t the time.
(b) Find the maximum and minimum values of $2 x^{3}-15 x^{2}+36 x+10$.
6. (a) Find the intervals on which the function :

$$
f(x)=x^{3}-6 x^{2}+9 x+8
$$

is (i) increasing strictly (ii) decreasing strictly. 7
(b) If $z=e^{4 x} \sin 3 y$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
(c) Find the derivative of $\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)^{1 / 2}$

SECTION-D

7. (a) Find $\lim _{x \rightarrow \pi}\left(\frac{\sin x}{\pi-x}\right)$.
(b) Evaluate $\int x^{3} e^{x^{4}} d x$.
(c) Evaluate $\int_{0}^{\frac{\pi}{2}}(\cos x-\sin x) d x$.
8. (a) Find the area bounded by the curves $y^{2}=4 x$ and $y=x$.
(b) Find the equation of the line through the point $(3,4)$ which makes equal intercepts on the co-ordinate axes.
(c) Find the equation of the sphere whose diameter is the line joining the origin to the point $(2,-2,4)$. Also find its centre and radius.
